Deficient Signaling via Alk2 (Acvr1) Leads to Bicuspid Aortic Valve Development
نویسندگان
چکیده
Bicuspid aortic valve (BAV) is the most common congenital cardiac anomaly in humans. Despite recent advances, the molecular basis of BAV development is poorly understood. Previously it has been shown that mutations in the Notch1 gene lead to BAV and valve calcification both in human and mice, and mice deficient in Gata5 or its downstream target Nos3 have been shown to display BAVs. Here we show that tissue-specific deletion of the gene encoding Activin Receptor Type I (Alk2 or Acvr1) in the cushion mesenchyme results in formation of aortic valve defects including BAV. These defects are largely due to a failure of normal development of the embryonic aortic valve leaflet precursor cushions in the outflow tract resulting in either a fused right- and non-coronary leaflet, or the presence of only a very small, rudimentary non-coronary leaflet. The surviving adult mutant mice display aortic stenosis with high frequency and occasional aortic valve insufficiency. The thickened aortic valve leaflets in such animals do not show changes in Bmp signaling activity, while Map kinase pathways are activated. Although dysfunction correlated with some pro-osteogenic differences in gene expression, neither calcification nor inflammation were detected in aortic valves of Alk2 mutants with stenosis. We conclude that signaling via Alk2 is required for appropriate aortic valve development in utero, and that defects in this process lead to indirect secondary complications later in life.
منابع مشابه
Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation.
Epithelial-mesenchymal transformation (EMT) occurs during both development and tumorigenesis. Transforming growth factor beta (TGFbeta) ligands signal EMT in the atrioventricular (AV) cushion of the developing heart, a critical step in valve formation. TGFbeta signals through a complex of type I and type II receptors. Several type I receptors exist although activin receptor-like kinase (ALK) 5 ...
متن کاملCardiac outflow tract defects in mice lacking ALK2 in neural crest cells.
Cardiac neural crest cells are multipotent migratory cells that contribute to the formation of the cardiac outflow tract and pharyngeal arch arteries. Neural crest-related developmental defects account for a large proportion of congenital heart disorders. Recently, the genetic bases for some of these disorders have been elucidated, and signaling pathways required for induction, migration and di...
متن کاملBicuspid Aortic Valve: An Unusual Cause of Aneurysm of Left Coronary Sinus of Valsalva
Bicuspid aortic valve is traditionally considered an innocuous congenital anomaly. Due to a better and widespread availability of non-invasive imaging techniques, it has come to the fore that 30% of these cases develop complications, viz., valve abnormality (aortic regurgitation and stenosis), and aneurysm of aortic root and ascending aorta. Sinus of Valsalva aneurysm is an uncommon complicatio...
متن کاملStructure–Activity Relationship of 3,5-Diaryl-2-aminopyridine ALK2 Inhibitors Reveals Unaltered Binding Affinity for Fibrodysplasia Ossificans Progressiva Causing Mutants
There are currently no effective therapies for fibrodysplasia ossificans progressiva (FOP), a debilitating and progressive heterotopic ossification disease caused by activating mutations of ACVR1 encoding the BMP type I receptor kinase ALK2. Recently, a subset of these same mutations of ACVR1 have been identified in diffuse intrinsic pontine glioma (DIPG) tumors. Here we describe the structure-...
متن کاملHigh-Density Lipoproteins Affect Endothelial BMP-Signaling by Modulating Expression of the Activin-Like Kinase Receptor
Objective—High-density lipoproteins (HDL) have antiinflammatory effects on the vascular endothelium. Because bone morphogenetic proteins (BMPs) are known to be inflammatory mediators, we examined the effect of HDL on BMP signaling. Methods and Results—Increasing concentrations of HDL progressively enhanced expression of the activin-like kinase receptor (ALK)1 and ALK2 in human aortic endothelia...
متن کامل